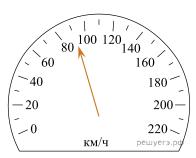
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4 \pm 0,2)$ Н записывайте следующим образом: 1,40,2.

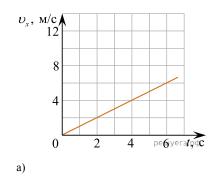
Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

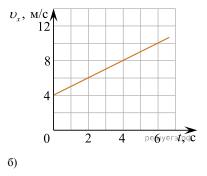
1. Абитуриент провел поиск информации в сети Интернет о наиболее скоростных лифтах в мире. Результаты поиска представлены в таблице.

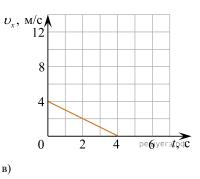

Nº	Название небоскрёба	Максимальная скорость лифта
1	Джон Хэнкок Центр	917 см/с
2	Бурдж – Халифа	36 км/ч
3	Taipei 101	60,6 км/ч
4	Саншайн-60	6,09 · 10 ² м/мин
5	Yokohama Landmark Tower	12,5 м/с

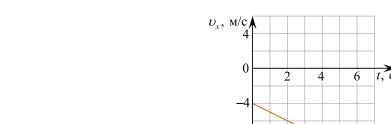
3)3

Самый скоростной лифт находится в небоскребе, указанном в строке таблицы, номер которой:

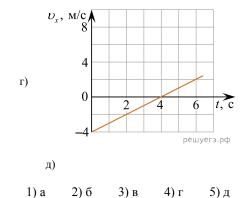

- 1) 1 2) 2
- 4) 4
- 5)5

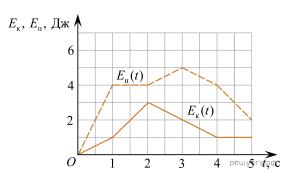

2. Во время испытания автомобиля водитель поддерживал постоянную скорость, значение которой указывает стрелка спидометра, изображённого на рисунке. Путь s=42 км автомобиль проехал за промежуток времени Δt , равный:




- 1) 16 мин
- 2) 19 мин
- 3) 22 мин
- 4) 25 мин
- 5) 28 мин

3. Проекция скорости движения тела v_x на ось Ox зависит от времени t согласно закону $v_x = A + Bt$, где A = 4 м/с, B = -1 м/ c^2 . Этой зависимости соответствует график (см. рис.), обозначенный буквой:

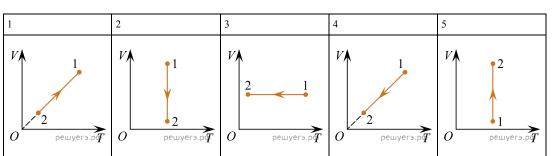


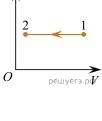


решуегэ.рф

- **4.** Модуль скорости v_1 первого тела в два раза больше модуля скорости движения v_2 второго тела. Если массы этих тел равны $(m_1=m_2)$, то отношение кинетической энергии первого тела к кинетической энергии второго тела $\frac{E_{k1}}{E_{k2}}$ равно:
 - 1) 1 2) $\sqrt{2}$ 3) 2 4) 4 5) 8
- **5.** На рисунке сплошной линией показан график зависимости кинетической энергии $E_{\rm K}$ тела от времени t, штриховой линией график зависимости потенциальной энергии E_n тела от времени t. Полная механическая энергия $E_{\rm полн}$ тела оставалась неизменной в течение промежутка времени:

- 1) (0; 1) c 2) (1; 2) c 3) (2; 3) c 4) (3; 4) c 5) (4; 5) c
- **6.** На рисунке изображён брусок, находящийся на горизонтальной поверхности, в двух различных положениях (1 и 2). Выберите вариант ответа с правильным соотношением модулей сил F_1 и F_2 давления бруска на горизонтальную поверхность и давлений p_1 и p_2 бруска на эту же поверхность:

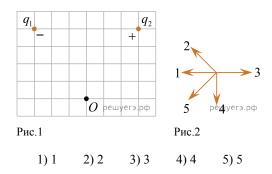



- 1) $F_1 = F_2, p_1 = p_2$; 2) $F_1 < F_2, p_1 = p_2$; 3) $F_1 = F_2, p_1 > p_2$; 4) $F_1 > F_2, p_1 = p_2$; 5) $F_1 = F_2, p_1 < p_2$
- 7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	280	93	25
2	320	106	25
3	360	120	25
4	400	133	25
5	440	146	25

Такая закономерность характерна для процесса:

- 1) адиабатного
- 2) изобарного
- 3) изохорного
- 4) изотермического
- 5) циклического
- 8. На рисунке представлен график зависимости давления идеального газа определенной массы от объема. График этого процесса в координатах (V,T) представлен на рисунке, обозначенном цифрой:

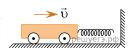


1) 1 2) 2 3) 3 4) 4 5) 5

9. В некотором процессе над термодинамической системой внешние силы совершили работу A=10 Дж, при этом внутренняя энергия системы увеличилась на $\Delta U=25$ Дж. Количество теплоты Q, полученное системой, равно:

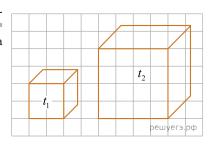
1) 0 2) 10 Дж 3) 15 Дж 4) 25 Дж 5) 35 Дж

10. Точечные заряды, модули которых $|q_I| = |q_2|$ расположены на одной прямой (рис. 1). Направление напряженности E результирующего электростатического поля, созданного этими зарядами в точке O, на рисунке 2 обозначено цифрой:



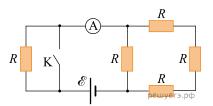
11. Парашютист совершил прыжок с высоты $h=600\,\mathrm{M}$ над поверхностью Земли без начальной вертикальной скорости. В течение промежутка времени $\Delta t_1=3,0\,\mathrm{c}$ парашютист свободно падал, затем парашют раскрылся, и в течение пренебрежимо малого промежутка времени скорость парашютиста уменьшилась. Если дальнейшее снижение парашютиста до момента приземления про-исходило с постоянной вертикальной скоростью, модуль которой $\upsilon=27\,\frac{\mathrm{KM}}{\mathrm{q}}$, то с раскрытым парашютом двигался в течение промежутка времени Δt_2 , равного ... с.

12. К бруску массой m = 0,64 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l = 15 см). Если длина пружины в недеформированном состоянии $l_0 = 11$ см, а модуль ускорения бруска a = 3 м/с², то жесткость k пружины равна ... **Н/м**.


13. На гидроэлектростанции с высоты h = 52 м ежесекундно падает m = 210 т воды. Если коэффициент полезного действия электростанции $\eta = 77\%$, то полезная мощность электростанции $P_{\text{полезн}}$ равна ... **МВ**т.

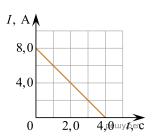
14. К тележке массой m=0,40 кг прикреплена невесомая пружина жёсткостью k=810 Н/м . Тележка, двигаясь без трения по горизонтальной плоскости, сталкивается с вертикальной стеной (см. рис.). От момента соприкосновения пружины со стеной до момента остановки тележки пройдёт промежуток времени Δt , равный ... мс.

15. Идеальный одноатомный газ, начальный объем которого V_1 , а количество вещества остается постоянным, находится под давлением $p_1 = 7 \cdot 10^5$ Па. Газ охлаждают сначала изобарно до объема $V_2 = 2$ м³, а затем продолжают охлаждение при постоянном объеме до давления $p_2 = 2 \cdot 10^5$. Если при переходе из начального состояния в конечное газ отдает количество теплоты Q = 5 МДж, то его объем V_1 в начальном состоянии равен ... м³.


16. Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика $t_1 = 8$ °C, а второго — $t_2 = 80$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °C.


17. Цилиндрический сосуд с идеальным одноатомным газом, закрытый невесомым легкоподвижным поршнем с площадью поперечного сечения S=160 см², находится в воздухе, давление которого $p_0=100$ кПа. Если газу медленно сообщить количество теплоты Q=840 Дж, то поршень сместится на расстояние l, равное ... **мм**.

18. Источник радиоактивного излучения содержит изотоп цезия $^{137}_{55}Cs$ массой $m_0 = 96$ г, период полураспада которого $T_{1/2} = 30$ лет. Через промежуток времени $\Delta t = 90$ лет масса m нераспавшегося изотопа цезия будет равна ... \mathbf{r} .


19. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если после замыкания ключа K идеальный амперметр показывал силу тока I_2 = 42 мA, то до замыкания ключа K амперметр показывал силу тока I_1 , равную ... мA.

- **20.** Электрон равномерно движется по окружности в однородном магнитном поле, модуль индукции которого B=2,3 мТл. Если радиус окружности R=6,4 мм, то кинетическая энергия $W_{\rm K}$ электрона равна ... э**B**.
- **21.** Электрический нагреватель подключен к электрической сети, напряжение в которой изменяется по гармоническому закону. Действующее значение напряжения в сети $U_{\rm д}$ = 36,0 В. Если амплитудное значение силы тока в цепи I_0 =0,63 А, то нагреватель потребляет мощность P, равную ... **Вт**.
- **22.** Маленькая заряжённая (q=0,10 мкКл) бусинка массой m=5,0 г может свободно скользить по оси, проходящей через центр тонкого незакреплённого кольца перпендикулярно его плоскости. По кольцу, масса которого M=15 г и радиус R=8,0 см, равномерно распределён заряд Q=1,0 мкКл. В начальный момент времени кольцо покоилось, а бусинка, находилась на большом расстоянии от кольца. Чтобы бусинка смогла пролететь сквозь кольцо, ей надо сообщить минимальную кинетическую энергию $E_{\rm K}^{\rm min}$ равную ... мДж.
- **23.** Стрелка AB высотой H=3.0 см и её изображение A_1B_1 высотой h=2.0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7.0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=80~000$ ядер радиоактивного изотопа золота $^{198}_{79}\mathrm{Au}$. Если период полураспада этого изотопа $T_{\frac{1}{2}}=2,7~\mathrm{cyr}$., то за промежуток времени $\Delta t=8,1~\mathrm{cyr}$. распадётся ... тысяч ядер $^{198}_{79}\mathrm{Au}$.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{A}{c}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal E=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью \vec{v} . Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{v}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости v движения электроскутера равен ... $\frac{\text{M}}{\text{c}}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\operatorname{tg}\beta}{\operatorname{tg}\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.